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ABSTRACT

Integral field spectroscopy represents a powerful technique for the detection and characterization of extrasolar
planets through high-contrast imaging since it allows us to obtain simultaneously a large number of monochro-
matic images. These can be used to calibrate and then to reduce the impact of speckles, once their chromatic
dependence is taken into account. The main concern in designing integral field spectrographs for high-contrast
imaging is the impact of the diffraction effects and the noncommon path aberrations together with an efficient use
of the detector pixels. We focus our attention on integral field spectrographs based on lenslet arrays, discussing
the main features of these designs: the conditions of appropriate spatial and spectral sampling of the resulting
spectrograph’s slit functions and their related cross-talk terms when the system works at the diffraction limit. We
present a new scheme for the integral field unit based on a dual-lenslet device (BIGRE), that solves some of the
problems related to the classical Traitement Intégral des Galaxies par l’Étude de leurs Rays (TIGER) design when
used for such applications. We show that BIGRE provides much lower cross-talk signals than TIGER, allowing
a more efficient use of the detector pixels and a considerable saving of the overall cost of a lenslet-based integral field
spectrograph.

Key words: instrumentation: spectrographs – planetary systems – techniques: high angular resolution – techniques:
image processing
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1. INTRODUCTION

Imaging of a significant number of extrasolar planets requires
achieving star versus planet contrasts of ∼106 (young giant
planets), or even 108–1010 (old giant and rocky planets) at
a few tenths of an arcsecond from a star, whose value is
∼10·λ/D in the near infrared for telescopes having pupil sizes of
D ∼ 10 m.

In this regime, the dominant noise contribution is due to
the stellar background. To achieve these ambitious goals, high-
contrast imagers usually include various components. First,
an extreme adaptive optics (XAO) system is used, allowing
us to correct aberrations up to a high order, and providing a
high Strehl ratio (SR). Second, some coronagraph is included,
attenuating the coherent diffraction pattern of the on-axis point-
spread function (PSF). Proper combination of these two devices
allows reduction of the stellar background down to values of
∼10−5 out to the adaptive optics (AO) system control radius5,
for a state-of-the-art system. This background is due to a rapidly
changing halo of speckles generated by residual telescope pupil
phase distortions that have special frequencies close to those
of planet images. In order to avoid false alarms, the detection
threshold level should then be set at several times the root mean
square (rms) noise level.

Even in the favorable case, where the speckle intensity
distribution can be assumed to be Gaussian (Marois et al.
2008a), the detection confidence limit should be at least 5
times the noise level. This implies that at angular separations
� 10 · λ/D, the limiting contrast provided by state-of-the-art

5 ∝ 1/2d, d ≡ actuator spacing projected on the telescope pupil.

XAO and coronagraphy is ∼2×104 for 8–10 m telescopes. In
addition, phase aberrations originating inside the optical train
not corrected by the XAO system produce speckles of longer
lifetime (minutes or hours) than those due the atmosphere. Other
slowly varying (of the order of seconds) phase errors are due to
aliasing effects in the wavefront sensor (Poyneer & Macintosh
2004) and—for coronagraphic systems—to adaptive optics time
lag (Macintosh et al. 2005).

Beyond a handful of favorable cases where planets are warm,
e.g., Chauvin et al. (2004); Chauvin et al. (2005); Neuhaeuser
et al. (2005), or with large separation from their parent star
(Kalas et al. 2008), or eventually with both these properties
(Lafrenière et al. 2008; Marois et al. 2008b), additional tech-
niques are required to reach the larger contrasts needed for
extrasolar planets detection.

Simultaneous differential imaging (SDI) is a high-contrast
imaging differential technique by which subtraction of different
images of the same field acquired simultaneously by the same
instrument allows us to remove or reduce the noise produced
by atmospheric and instrumental phase aberrations. The SDI
principle can be applied to images obtained with different
polarization modes (Gisler et al. 2004) or selecting two distinct
wavelengths in a fixed spectral range (Lenzen et al. 2005;
Marois et al. 2005), or better exploiting the entire spectral
range by integral field spectroscopy (Berton et al. 2006). In
this paper, we will focus on SDI based upon this latter strategy
only.

Essentially, SDI is a calibration technique (Smith 1987;
Racine et al. 1999; Marois et al. 2000; Sparks & Ford 2002;
Biller et al. 2004; Berton et al. 2006; Ren & Wang 2006; Thatte
et al. 2007): images are acquired simultaneously in bands at
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Figure 1. Near-infrared low-resolution spectra (two-pixel resolving power
R = 50) of the Brown Dwarf GL 570 D of the planet Saturn and of a G2V
star (by courtesy of Dr. L. Testi and Dr. F. Ghinassi) obtained at TNG+NICS
with its Amici Prism. The spectra are normalized to their flux at 1.30 μm.

close wavelengths where the planetary (but not the stellar)
flux differs appreciably. Subtracting each other these images
should allow us to remove or at least reduce the speckle noise,
since this is assumed to be similar in the various images after
a suitable chromatic rescaling, while the planet signal is left
nearly untouched.

There are at least two ways to exploit this calibration tech-
nique. In a more traditional approach, specific characteristics of
the (expected) planetary spectra are exploited. As indicated by
various theoretical work (Sudarsky et al. 2000; Baraffe et al.
2002; Burrows et al. 2003; Sudarsky et al. 2003; Burrows
et al. 2004) and observations (e.g., brown dwarfs and gaseous
planets in the solar system), the spectra of giant planets are
dominated by several absorption bands (mainly due to methane
and water vapor) at both visible and near-infrared wavelengths.
In such a case, SDI may work by subtracting images where the
planet signal is absent from those where it is present, while the
background is nearly the same, because the spectrum of the par-
ent star is nearly featureless (see Figure 1). The main advantage
of this technique is the minimum assumptions required on the
chromatic behavior of speckles; however, this technique allows
only a limited reduction of noise. Alternatively, we might try to
model the variation of speckles with a wavelength (Sparks &
Ford 2002). In principle, this allows us to remove completely
speckle noise without making any assumption about the plane-
tary spectrum, hence allowing us to retrieve the real planetary
spectrum (Thatte et al. 2007).

Independently of the adopted SDI recipe, integral field
spectrograph designs tuned for diffraction-limited high-contrast
imaging should take into account several effects, jeopardizing
the interpolation procedures requested before simultaneous
spectral subtractions, which in turn severely limit the accuracy
of this calibration technique.

In this paper, we present a discussion of these effects and
derive the basic equations that should be considered when de-
signing lenslet-based diffraction-limited integral field spectro-
graphs. Then, we describe a new concept for the lenslet array,
shaping the IFU of such instruments (i.e., BIGRE) and allow-
ing us to improve significantly over the main limitations of the
more traditional designs based on the ‘Traitement Intégral des
Galaxies par l’Étude de leurs Rays (TIGER) concept.

The structure of the paper is as follows. In Section 2, we recall
the basics of a postcoronagraphic speckle field. In Section 3, we
summarize the principle of SDI. In Section 4, we discuss the
basics of spectroscopic SDI (hereafter S-SDI), defining the con-
ditions allowing us to avoid aliasing errors when sampling both
the entrance speckle field and the final exit slit functions. In
Section 5, we present various options for IFS instruments suited
for S-SDI. In Section 6, we define the cross-talk terms in the
case of diffraction-limited lenslet-based IFS. In Section 7, we
derive the rules governing the image propagation at the diffrac-
tion limit through the TIGER concept, and in Section 8, the
ones proper to the new BIGRE concept. Specifically, we ex-
plain here how to conceive a BIGRE-oriented IFS instrument
adopting standard dioptric devices. In Section 9, we present
two design setups (based on BIGRE and TIGER, respectively)
for SPHERE,6 indicating the solution adopted for its future
IFS. In Section 10, we compare the TIGER and the BIGRE
concepts in terms of coherent and incoherent signals suppres-
sion, considering several cases for the single lens shape and the
IFU lattice configuration. Finally, our conclusions are drawn in
Section 11.

2. POSTCORONAGRAPHIC SPECKLE FIELD MODELING

An appropriate understanding of chromatic intensity (e.g.,
Racine et al. 1999) and spatial (e.g., Sparks & Ford 2002)
scalings of a speckle field is basic to any application of the
SDI calibration technique. For this reason, a short description
of these physical concepts is fundamental to introduce the
reader to the topics treated in the rest of the paper. Inspired
by the approach of Perrin et al. (2003), we will use the
Fraunhofer approximation to describe the impact of small
residual phase variations of the electric field (e) imaged on a
fixed postcoronagraphic entrance pupil plane,7 i.e., the working
case of high-contrast imaging instruments like SPHERE.

While this approach allows a simple mathematical treatment
and physical understanding, it ignores more complex effects
due to amplitude errors and Fresnel propagation, as pointed out
by Marois et al. (2006). It is outside the scope of this paper
to discuss such effects, which can be minimized by careful
instrument design, but it is likely that they will set the ultimate
limit of planet imaging.

The most general expression of the monochromatic electric
field once projected on the coronagraphic entrance pupil plane
is

e ≡ p · exp[i · φ], (1)

where (p) is the coronagraphic pupil transmission function, and
(φ) is the phase of the electric field evaluated over this coro-
nagraphic pupil plane. Assuming a perfect optical propagation
from the telescope to this plane—i.e., no differential chromati-
cal aberrations in the beam—the chromatism of the phase can
be written explicitly as a function of the wavelength (λ) and the
wavefront error (w) as follows:

φ = 2π

λ
· w. (2)

6 SPHERE is an instrument designed and built by a consortium of LAOG,
MPIA, LAM, LESIA, LUAN, INAF, Observatoire de Genève, ETH, NOVA,
ONERA, and ASTRON in collaboration with and under from ESO. Its science
objective is the direct detection and characterization of giant extrasolar planets
in the visible and near-infrared (Beuzit et al. 2008).
7 Hereafter Fourier pairs are defined with the same letter written in small and
capital case respectively.
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Figure 2. Example of a postcoronagraphic speckle field (integration time =
0.5 ms, wavelength = 1 μm), simulating the XAO system and the four quadrant
phase mask coronagraph of SPHERE (by courtesy of the SPHERE team).

Assuming as real the expectation value of the wavefront error
given by an XAO system in the near-infrared (i.e., w � 10−2 μm
at λ ∼ 1 μm), Equation (1) can be approximated as follows:

e = p · (1 + i · φ). (3)

At this point, the action of an unspecified coronagraph can be
formalized directly on the coronagraphic exit pupil plane. The
goal of the coronagraph is to cancel as much as possible the
amplitude of the electric field along the optical axis on this
plane. Exploiting Equation (3), the resulting on-axis electric
field (ec) for a perfect coronagraph8 is then

ec = e − p = i · p · φ, (4)

or, by Equation (2), is equal to

ec = i · 2π

λ
· p · w. (5)

Defining finally (Ec, P,W ) as the Fourier transforms (FT) of
(ec, p,w), Equation (5) allows us to express the monochromatic
postcoronagraphic speckle field (S) as

S(λ) ≡ |Ec(λ)|2 =
(

2π

λ

)2

· |P ⊗ W |2 . (6)

Equation (6) shows that the intensity of a speckle field scales
proportionally to λ−2, while its chromatic wavelength scaling
comes from the fact that the variable involved in the wavefront
w is the spatial frequency (ν) and not the position (x) in the
image plane, i.e.,

w(ν) ≡ FT[W (x)]. (7)

This indicates that spatial frequency translates into position
according to wavelength, e.g., by applying the standard grating
equation as follows:

m · λ = g · sin(θ ), (8)

8 A perfect coronagraph removes actually the coherent part of the electric
field amplitude due to the on-axis optical beam only, see e.g., Cavarroc et al.
(2006); here, we consider the total amplitude in order to simplify the related
formalism.

Figure 3. Cuts through the data cube obtained by the chromatical dispersion of
a postcoronagraphic speckle pattern resulting from end-to-end simulations of
the IFS inside SPHERE (intensity increases from red to blue colors). Position
on sky (θ ) is on the horizontal axis, while the spectral range (λmin–λmax) is on
the vertical axis. The red and blue lines indicate two spectra taken at different
radial distances to the optical axis. Moving along these spectra, a variable
pseudo–periodic modulation due to the speckle chromatism is clearly visible
(by courtesy of the SPHERE team).

(A color version of this figure is available in the online journal.)

where m is the diffraction order, θ is the diffraction angle, and
g is the grating constant corresponding to the spatial frequency
(ν), or,

g(ν) ≡
(

1

ν

)
, (9)

the position on the image plane returns

x = f · sin(θ ), (10)

with f being the focal length of the postcoronagraphic reimag-
ing optics. Using Equations (8) and (9), this position can be
written finally as

x = f · m · λ · ν. (11)

Equation (11) indicates that the position of a speckle corre-
sponding to a given fixed spatial frequency due to the post-
coronagraphic wavefront error scales linearly with wavelength
(Sparks & Ford 2002). More in detail, this means that for ev-
ery fixed position in the image plane, speckles corresponding to
distinct spatial frequencies get distinct wavelengths (Figure 3).
We call this feature speckle chromatism.

3. THE SDI CALIBRATION TECHNIQUE FRAMEWORK

In the approach considered in this paper, the fundamental
SDI step is the simultaneous acquisition of images at adjacent
wavelengths in a spectral range where the planetary and stellar
spectra differ appreciably. From ground-based observations, the
wavelength bands Y, J, H, and K are well suited for extrasolar
giant planets (Beuzit et al. 2008; Macintosh et al. 2008), and
rocky planets (Vérinaud et al. 2008).

Let S(λ, θ ) be the monochromatic spectral signal correspond-
ing to a fixed angular position (θ ) on sky expressed as the sum
of the spectral signal of the star, St(λ, θ ), and the spectral signal
of a candidate low-mass companion (e.g., an extrasolar planet)
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which lies specifically in this angular position, P l(λ, θ ). Fix-
ing a pair of wavelengths (λ1, λ2) inside the window above, the
following relations hold:

S(λ1, θ ) = St(λ1, θ ) + P l(λ1, θ ) (12)

S(λ2, θ ) = St(λ2, θ ) + P l(λ2, θ ). (13)

The basic SDI assumption is that after suitable flux normaliza-
tion and chromatic rescaling, the following relations hold for
the boundary wavelengths of the range above:

St(λ1, θ ) = St(λ2, θ ) (14)

P l(λ2, θ ) = 0. (15)

Then the difference between S(λ1, θ ) and S(λ2, θ ) should
return—in principle—the spectral signal P l(λ1, θ ) only, i.e.,
the one appropriate to the low-mass (or extrasolar planet)
candidate. However, while working with narrow-band filters
several precautions are required.

1. An image taken with one filter has to be spatially re-
scaled before confronting it with a second image taken
with a different filter due to the speckle scaling described
in Section 2;

2. Any filter separating two adjacent spectral bands should
have similar spectral transmission profiles;

3. The difference (δλij ) between the central wavelengths
(λi, λj ) of two adjacent filters should be as small as
possible.

The last point is the most critical due to the fact that
chromatism of the speckle field always induces a certain amount
of phase errors. Adopting the formalism of Marois et al. (2000),
the residual wavefront distortion can be described through the
Fourier transform of the postcoronagraphic wavefront error (W ),
or by its relative chromatic phase error (Φ).

Adopting the standard approximation for the SR (Maréchal
1947), it is possible to transfer this rms wavefront error (σΦ) on
a relative flux variation on the detector plane. In detail, defining
σΦ(λ) as the rms chromatic wavefront error, Marois et al. (2000)
found the following relation for the flux residual between images
taken with two narrow-band filters (i, j ):

ΔSi,j

Si,j

= 2 · σ 2
Φ(λi) · δλi,j

λi

. (16)

Equation (16) indicates that with the so-called single difference
method, the final error is proportional to

1. the variance of the wavefront error: σ 2
Φ,

2. the relative wavelength separation between the narrow-band
filters: δλi,j /λi .

The need for a calibration technique more efficient than SDI
but still based on the simultaneous difference of chromatic
images of the same target field was addressed theoretically
by Marois et al. (2000), which showed that the speckle noise
reduction could be much more efficient if observations at
three wavelengths were available using their double difference
method, and verified experimentally with the discovery of the
first planet by using this calibration technique (Lagrange et al.
2008).

Starting from there, it is reasonable to assume that a larger
number of images at different wavelengths, taken with a regular

spectral step, can result in even better reduction of speckle
noise with a true S-SDI calibration technique. The gain could
be even larger if observations at several wavelengths would
allow an accurate derivation of the chromatic wavelength
scaling, as proposed by, e.g., Thatte et al. (2007). This thought
suggests the use of integral field spectroscopy for collecting
data simultaneously at a large number of wavelengths given by
the total spectral length and the spectral resolution of a suitable
disperser (Berton et al. 2006).

Note that such an approach is convenient even in the more
conservative approach where modeling of the spectral depen-
dence fails, simply because a larger number of wavelength pairs
can be constructed.

4. THE S-SDI CALIBRATION TECHNIQUE FRAMEWORK

Exploiting an IFU as field stop array over an optical plane
conjugated with the focal plane of the telescope itself allows
an appropriate sampling of the postcoronagraphic speckle field
defined by Equation (6). The fact that this optical signal
gets a finite cut-off spatial frequency proportional to D/λmin,
where D is the postcoronagraphic pupil size, and λmin is the
spectrograph’s cut-on wavelength, means that a correct spatial
sampling on this plane should be imposed searching for suitable
sizes for the separation between adjacent spaxels,9 which in turn
compose the adopted IFU. This sampling condition is detailed
in Section 4.1.

The request of a sampling criterion based upon the Shannon
theorem is mandatory not only at the level of the IFU spaxels
but also at the level of the detector pixels. In this case, the
Shannon sampling condition allows us to interpolate correctly,
both spatially and spectrally, the exit slit functions, which in
turn are the final output of an integral field spectrograph. These
two sampling conditions are detailed in Sections 4.2 and 4.3,
respectively.

4.1. Spatial Sampling of the Entrance Speckle Field

Let Fin be the focal ratio by which the postcoronagraphic
speckle field is projected on the IFU plane. Theory of image
formation (e.g., Goodman 1996) implies then that the cut-off
spatial frequency appropriate to S can be written as a function
of Fin and λmin as follows:

νC =
(

1

Fin · λmin

)
. (17)

The spaxel size (Dspaxel) defines the Nyquist spatial frequency
on this plane:

νNy ≡
(

1

2 · Dspaxel

)
. (18)

Thus, the Shannon sampling theorem applied to the IFU plane
returns:

νNy � νC. (19)

4.2. Spatial Sampling of the Spectrograph’s Exit Slits

The condition avoids aliasing effects when interpolating
the array of exit slits over the whole range of wavelengths
considered by the spectrograph, and it may be written through
the following formalism.

9 Spaxel indicates a spatial pixel appropriate to the IFU subsystem inside an
IFS instrument. An IFU in turn is the matrix of spaxels which should be placed
on the reimaged telescope focal plane, working as an optical field-stop array.
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The detector pixel size (dpixel) defines the Nyquist spatial
frequency on this plane:

μNy ≡
(

1

2 · dpixel

)
. (20)

Once the final spectrograph’s exit slits are imaged on the detector
pixels through a fixed output focal ratio (Fout) and an optical
magnification (mIFS), theory of image formation, e.g., Goodman
(1996), implies that their spatial cut-off frequency is

μC =
(

1

λmin · mIFS · Fout

)
, (21)

where λmin indicates the shortest wavelength imaged by the
spectrograph. We define the supersampling condition as

μNy � μC. (22)

4.3. Spectral Sampling of the Speckle Field Over the Entire
Field of View

When working with a speckle pattern data cube, chromatic
resampling is needed to obtain both monochromatic images, as
indicated by Marois et al. (2000), or spectra, as indicated by
Thatte et al. (2007).

To this aim, Sparks & Ford (2002) suggested to adopt
a suitable pixel-dependent resampling of the speckle field
which varies according to wavelengths, while Ren & Wang
(2006) developed a subtraction algorithm based upon analytical
modelings of the spectral content of a speckle field. Anyhow,
before any resampling recipe, it is important to find out the exact
condition allowing us to avoid aliasing errors due to the speckle
chromatism effect.

Since the speckle pattern scales proportionally to wavelength
(Section 2), a feature located at an angular distance θ from
the central star at wavelength λ moves spectrally at a rate of
dλ/dθ = λ/θ . Spatial speckles of width δθS = λ/D, therefore,
translates into spectral speckles of width

δλS = λ2

θ · D
, (23)

i.e., the spectral extension of speckles is inversely proportional
to the distance from the field center. Nyquist sampling of spectral
speckles requires spectral sampling (δλP ) corresponding to half
the speckle width, so far a two-pixel resolving power (R =
λ/2δλP ), Nyquist sampling implies the following condition:

R >
λ

δλS

= θ · D

λ
. (24)

This condition will be fulfilled within a field angle θNy, referred
to as the Nyquist radius, given by

θNy = R · λ

D
. (25)

We note that it is possible to ensure Nyquist sampling in a system
which does not fulfill the supersampling condition written in
Equation (22), as long as its field of view does not exceed
the Nyquist radius and as long as the source itself does not
contain spectral features which violate the Shannon theorem.

For example, an instrument operating on an 8 m telescope at
1.6 μm with a full field of view of 5 arcsec, would require a
two-pixel resolving power of at least 60. For systems where
larger field of view or lower resolving power is required, the
supersampling condition must be fulfilled. In these systems, the
zone lying within the Nyquist radius fulfils both Equations (22)
and (24). We refer to this double fulfillment as hypersampling.

For an integral field spectrograph covering a spectral range
fixed between a cut-on (λmin) and a cut-off wavelength (λmax),
where λc represents the central one, the hypersampling condition
will be valid over the whole spectral range within the radius

θNy = λ2
min · R

D · λc
. (26)

5. OPTIONS FOR THE IFS CONCEPT REALIZING S-SDI

IFS needs a very large number of pixels at the level of the
final image plane where the matrix of spectra is acquired by the
detector. This issue is particularly important when spectral and
spatial information are recorded simultaneously in the detector
plane, such as for IFS based on the image slicer or the TIGER10

concepts.
The image slicer option is more efficient in terms of detector

pixels usage, since no separation between spectra from adjacent
pixels is required in one space dimension. Assuming a square
detector, the number of detector pixels (N2

det) required for a
given number of spaxels (N2

spaxel) and the number of spectral
samples (Nspec) are given by the following relation:

N2
det = N2

spaxel · Nspec. (27)

In this concept, a bidimensional field of view is divided by
mirrors into strips, and then reformatted on a mono-dimensional
pseudo–long slit (see e.g., Prieto & Vives 2006, Figure 1).
Monochromatic exit slits will be then obtained downstream
by using a standard collimator, disperser, and camera optical
system. A potential problem of the image slicer design concerns
the noncommon path aberrations in adjacent spaxels of the field
of view that fall on different slices. However, this concept
has been proved able to obtain (moderately) high-contrast
images from ground even without coronagraphic devices and
with moderate SRs (∼0.3–0.5; Thatte et al. 2007). A further
examination of an image slicer instrument dedicated to high-
contrast diffraction-limited imaging spectroscopy is on progress
within the feasible study for the future E-ELT Planet Finder
facility (Kasper et al. 2008).

On the other hand, noncommon path aberrations are expected
to be very small in the case of the TIGER-type concept (Bacon
et al. 1995), which uses an IFU based on a matrix of lenses
with fixed lens pitch. In this case, spectra given by individual
spaxels should be separated on the detector. For a separation of
Nsep between spectral samples, the required number of detector
pixels becomes

N2
det = N2

spaxel · Nspec · Nsep. (28)

The lenslet-based concept then requires a large number of
detector pixels. However, the format of image slicer IFS data on
the detector is suited for spectra with many spectral elements,

10 “TIGER” is a French acronym standing for “Traitement Intégral des
Galaxies par l’Étude de leurs Rays,” has Bacon et al. (1995) named their
lenslet-based IFS.
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i.e., >102, and a relatively small number of spaxels, i.e., < 104.
These are not typical values for instruments dedicated to planet
search that generally requires short spectra (∼20–30 spectral
elements) for a large number of spaxels (∼105). In order to
adequately exploit the detector, the number of slices should be
roughly given by the ratio between the spaxels and the length of
the spectra. This value is ∼103 for an integral field spectrograph
tuned to planet finding, which would result in an extremely
long pseudoslit. The format of the image slicer IFU then
exacerbates the problems related to noncommon paths: photons
from adjacent spaxels may have very different paths through
the instrument. It is then difficult to maintain small phase
errors, possibly compromising most demanding high-contrast
imaging.

Given the difficulties inherent to the image slicer solution, we
carefully examined the properties of the lenslet-based design,
trying to minimize the separation between spectral samples. To
this aim, we developed the new optical concept proposed by
Dohlen et al. (2006): BIGRE.11 The properties of this design
are discussed and compared to the TIGER ones, starting from
Section 8.

6. INCOHERENT AND COHERENT CROSS TALKS OF A
LENSLET-BASED IFU

Adopting the formalism of Goodman (1996), any spaxel of an
IFU is a sum of linear optical systems. In the specific case of a
lenslet-based IFU, these systems are single lenses. The coherent
and incoherent parts of the electric field incoming onto these
optical linear systems are transmitted in a different way through
two adjacent spaxels. Specifically, when the illumination is
coherent, the linear responses of adjacent spaxels vary in unison,
and therefore their signals, once transmitted and reimaged on the
spectrograph’s slits plane, must be added in complex amplitude.
In contrast, when the illumination is incoherent, the linear
responses of two adjacent spaxels are statistically independent.
This means that their signals, once transmitted and reimaged on
the spectrograph’s slit plane, must be added in intensity.

Hence, once dispersed and reimaged by the spectrograph’s
optics,12 monochromatic slits corresponding to adjacent spaxels
will suffer from a certain amount of interference. We call
this quantity coherent cross talk. Furthermore, monochromatic
slits will be affected by a spurious amount of signal due to
its adjacent spectra. We call this quantity incoherent cross talk.
With reference to Figure 4, coherent cross talk is the interference
signal between monochromatic spectrograph’s entrance slits
which correspond to adjacent lenses, i.e., separated by a distance
equal to the IFU lens pitch,13 while incoherent cross talk
is the spurious signal registered over a fixed monochromatic
spectrograph’s exit slit and due to its closest spectra, even if due
to photons of different wavelength.

Incoherent and coherent cross talks represent a major issue
identifying the best solution for the spaxels shape (circular,
square, etc.), the lenslet lattice configuration (hexagonal, square,

11 “BIGRE” was the first word uttered by G. Courtes—the inventor of the
TIGER concept—while the authors explained him all the problems of
diffraction-limited IFS and their possible resolution using this new optical
concept. “BIGRE” is a French exclamation with a meaning similar to the
British: “Bligh-me” or the Italian: “Accidenti.”
12 The dispersion axis can be defined orienting the spectrograph’s disperser
with respect to a reference frame fixed on to the IFU.
13 The pitch of an array of spaxels is defined as the center-to-center distance
among adjacent ones. For a filling factor close to unity, this quantity equals the
size of the single spaxel.

Figure 4. Sketch of the final spectra (black rectangles) superimposed on an array
of seven (red) hexagonal spaxels, down of a lenslet-based IFU. DL indicates the
IFU lens pitch, while the dispersion axis is indicated through a black arrow
labeled with the symbol λ.

(A color version of this figure is available in the online journal.)

etc.), and for the geometric allocation of the spectra at the level
of the detector plane. In fact, incoherent and coherent cross
talks are spurious signals—not removed by the application of
supersampling and hypersampling criteria—which still affect
the final array of spectra, thus damaging the final three-
dimensional data cube. The selection of the kind of field unit
to be mounted at the entrance of a lenslet-based integral field
spectrograph should then depend on the estimate of the level of
incoherent and coherent signals over the individual exit slits of
such a spectrograph. Additional considerations should enter in
this choice, e.g., the fact that the relevance of the cross-talk terms
depends on the wavefront errors after the coronagraph or that
minimization of the cross talk might result in a system design
which is potentially less efficient when observations are limited
by photon noise. In general, cross talk should be specified so
that its contribution to the contrast error budget is less than the
flat field errors and all remaining spurious effects affecting the
postcoronagraphic speckle field.

6.1. Coherent Cross Talk: The Formalism

Basically, coherent cross talk is the interference of a beam
passing through a number of apertures (individual lenslets) and
measured on a screen (the spectrograph’s entrance slits plane)
conjugated to the detector plane.

Let us assume a flat wavefront impinging onto the IFU lenses.
Let now E1 be the complex electric field of the coherent signal
transmitted by spaxel 1 on the spectrograph’s entrance slits
plane. Let dE2 be the stray part of the complex electric field
of the coherent signal transmitted by spaxel 2 (spaxel 2 being
adjacent to spaxel 1) and evaluated in the position of the slit
corresponding to spaxel 1. E1 and dE2 are complex quantities
that differ according to the phase difference, which is due to
different optical paths through different apertures (lenslets).
The effective coherent intensity measured on the spectrograph’s
entrance slits plane and corresponding to the position of spaxel
1 will then be

IC
1 ≡ |E1 + dE2|2 . (29)

In the worst case, the phase difference of waves passing through
adjacent lenses is πk (k ∈ Z). In this case and neglecting the
term |dE2|2 in the binomial expression of Equation (29), the
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effective coherent intensity proper to spaxel 1 becomes

IC
1 = I1 + 2 · |E1| · |dE2| = I1 · (1 + CCT). (30)

CCT is defined as the coherent cross-talk coefficient:

CCT ≡ 2 · |dE2|
|E1| = 2 ·

(
dI

I1

)1/2

, (31)

where the stray coherent intensity proper to spaxel 2 evaluated
in the position of spaxel 1 is defined as

dI ≡ |dE2|2 , (32)

and the own coherent intensity of spaxel 1 is defined as

I1 ≡ |E1|2 . (33)

CCT represents the maximum extra amount of coherent signal
on the slit function corresponding to a fixed lenslet aperture,
and its estimate can be given by measuring the square root of
the coherent intensity proper to the slit function corresponding
to the adjacent aperture. However, the total amount of coherent
cross talk is obtained only by adding the contribution due to all
the apertures in the lenslet array.

6.2. Incoherent Cross Talk: The Formalism

The amount of spurious incoherent light can be evaluated
directly on the detector plane, where a single exit slit appears
as a spectrum. As indicated in Figure 4, any final spectrum is
surrounded by several adjacent spectra.

Let I1(λ) be the intensity proper to a fixed monochromatic
exit slit; due to the presence of an adjacent exit slit its effective
incoherent intensity will be

I INC
1 (λ) ≡ I1(λ) + dI2(λ), (34)

where dI2(λ) is the stray incoherent monochromatic intensity
of a given adjacent exit slit, evaluated at a distance equal to the
separation to the fixed one

dI2(λ) ≡ ICT(λ) · I1(λ), (35)

where ICT(λ) is defined as the monochromatic term of the
incoherent cross-talk coefficient (ICT).

The incoherent cross-talk coefficient corresponding to the
spectrograph’s wavelengths range (λmin − λmax) is then defined
as

ICT ≡
∫ λmax

λmin

(
I INC

1 (λ) − I1(λ)

I1(λ)

)
dλ. (36)

Thus—differently to the coherent case—the incoherent cross
talk must be considered on the detector plane, searching for
spectral alignments for which the distance among adjacent
spectra is minimized. Once this spectral alignment is found,
an estimate of ICT can be given by measuring the incoherent
intensity of a single monochromatic exit slit at the distance
equal to the transversal separation among adjacent spectra.
However, the total amount of incoherent cross talk is obtained
only by adding the contribution of all the spectra imaged onto
the detector plane.

7. DIFFRACTION-LIMITED INTEGRAL FIELD
SPECTROSCOPY WITH THE TIGER CONCEPT

In classical TIGER design optimized for seeing limited
conditions, the spaxels (or microlenses) comprising the IFU are
much bigger than the Airy disk, providing therefore resolved
images of the telescope entrance pupil, which in turn represent
the entrance slits of this kind of integral field instrument; see
e.g., Bacon et al. (1995, 2001).

Differently, in the case of high-contrast imaging the mi-
crolenses sample the telescope image according to the
Shannon theorem. Each microlens acts like a diaphragm
isolating a portion of the incoming electric field and concen-
trates it into a micropupil image in the focal plane of the mi-
crolens, acting as the entrance slit function of the spectrograph.
The micropupil image is the convolution between the geomet-
rical pupil image and the PSF of the microlens. As seen below,
Nyquist sampling of the focal plane implies that the telescope
entrance pupil is unresolved by the microlens.

For a circular lens of diameter Dspaxel, the transmission
function is Π(u/Dspaxel), where u is the image co-ordinate
normalized to the lens diameter, and Π(x) is a top-hat function
with unitary transmission within the unitary diameter and zero
outside this diameter. According to Equation (19), the size of
the single microlens should be

Dspaxel �
(

Fin · λmin

2

)
. (37)

Following Born & Wolf (1965), the monochromatic full width
at half-maximum (FWHM) of the PSF proper to a circular
microlens with focal length fout is

FWHM = fout · 1.02 · λ

Dspaxel
, (38)

while the geometrical diameter of the micropupil is

DMPG = fout

Fin
. (39)

Combining Equations (37), (38), and (39), we obtain

FWHM = 2.04 ·
(

DMPG · λ

λmin

)
. (40)

This size is therefore at least twice as wide as the geometrical
pupil, and so the convolution product is approximately equal to
the microlens PSF.

Thus, we can say that the field distribution onto the spectro-
graph’s slit plane approximates the one proper to an unresolved
micropupil, which is described by the Jinc function14 corre-
sponding to the microlens aperture:

epupil(s) ∼ Jinc(s), (41)

with s being defined as the pupil the co-ordinate normalized to
λ · Fout, where Fout is

Fout ≡ fout

Dspaxel
. (42)

Finally, the slit function will be the square modulus of the signal

SF(s) = |epupil(s)|2; (43)

see Figure 5.

14 We define Jinc function as the Fourier transform of circular aperture:
Jinc(x) = (2 · J1(π · x)) / (π · x), where J1 indicates the Bessel-J function of
order one.
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Figure 5. Normalized TIGER entrance slit function. The example shows the
case of the IFU optimized for SPHERE in the working wavelengths range:
0.95–1.35 μm; colors indicate seven distinct wavelengths.

(A color version of this figure is available in the online journal.)

Table 1
Independent Parameters of a TIGER-oriented IFS

Parameter Symbol

Postcoronagraphic Pupil Size ≡ D

IFS Cut-on Wavelength ≡ λmin

Size of the Single TIGER Microlens ≡ Dspaxel

Focal Length of the TIGER Microlens ≡ fout

IFS Detector Pixel Size ≡ dpixel

IFS Optical Magnification ≡ mIFS

IFS Disperser (two-pixel) Resolving Power ≡ R

7.1. Sampling Analysis Applied to the TIGER Concept

As indicated by Equation (43), the single spectrograph’s slit is
an unbound signal whose size varies linearly with wavelength.
The final pixel size defines the spatial Nyquist frequency on
the spectrograph image plane according to Equation (20). Due
to its unbound nature, the spatial cut-off frequency of the
spectrograph’s exit slit gets the finite value fixed by Equation
(21). Then, following Equation (22), supersampling imposes a
lower limit to the output focal ratio by which the single microlens
generates its corresponding micropupil:

Fout �
(

2 · dpixel

λmin · mIFS

)
. (44)

Output focal ratios lower than the one fixed by Equation (44)
introduce aliasing errors in the sampled spectrum, unless the
field is smaller than the Nyquist radius. According to Equation
(26), the latter depends on the postcoronagraphic pupil size,
the spectrograph’s working wavelengths range and its spectral
resolution. Hence, the true hypersampling is obtained when this
radius matches with the maximum image field radius, which
in turn is related to the spectrograph’s resolving power. Then,
for a fixed resolving power, hypersampling is then a matter of
allocation of the array of final spectra onto the detector pixels,
which in turn depends on the accepted cross-talk levels.

8. DIFFRACTION-LIMITED INTEGRAL FIELD
SPECTROSCOPY WITH THE BIGRE CONCEPT

Cross talk in diffraction-limited TIGER-oriented IFU is
generally quite large, because the output slit functions, taking

the form of an Airy pattern, decrease slowly with the distance
from the center. Suitable apodization of the microlenses might,
in principle, be used to reduce the cross-talk terms, but the
feasibility of such a scheme remains to be demonstrated. We
consider instead an alternative lenslet-based optical scheme that
we call BIGRE, which we consider to be much more practical.

As in the TIGER case, the BIGRE spaxel consists of a
microlens which acts essentially as a diaphragm isolating a
portion of the incident electric field. This lens, of focal length
f1, focalizes the field into an unresolved micropupil with a field
distribution described by Equation (41). Different to the TIGER
case, we place a second microlens at a distance equal to its focal
length f2, behind the micropupil. This lens collects field and
reproduces an image of the first lens, behind the micropupil.
When f2 < f1, the final image is reduced, resulting in the same
flux-concentrating effect as in the original TIGER concept, but
without the field–pupil inversion. We define K factor as the
spaxel demagnification factor:

K ≡ f1

f2
. (45)

Ideally, for infinitely wide optics throughout the following
spectrograph, the slit function is a perfectly bound top-hat
function, so no cross talk would be present between spaxels.
Of course, this is not physical, and the following finite sized
optics modifies the slit function as we will see in the following.

It may also be argued that a perfect top-hat function is not
the ideal slit function from a sampling point of view, since
its modulus transfer function (MTF) will be unbound and
create some aliasing. As we will see, the implementation of
a diaphragm of appropriate size modifies the slit function in a
way which turns out to be beneficial both from a cross talk and
from a sampling points of view.

Figure 6 shows the BIGRE spaxel conceptually, indicating its
dimensions and the geometrical ray paths. The two lenslet arrays
are implemented as the two surfaces of a single component
and the micropupil array occurs within the component. In
principle, it would be possible to implement a mask in this
micropupil image, but this option has not been retained in
view of complexity of manufacturing and aligning a system of
three micro-optical elements (lens, diaphragm, lens). Instead,
we consider the second lens and the subsequent collimation
optics to be sufficiently large to not significantly modify the
field transmission, implementing the mask in the metapupil
image formed onto the spectrograph’s dispersion element (see
Figure 10).

While the geometrical micropupil size is given by the focal
ratio of the input beam according to Equation (39), the charac-
teristic size of the diffractive micropupil is

DMP = λ · f1

Dspaxel
. (46)

In the following, we use a pupil co-ordinate unit, s, which is
normalized to DMP, allowing us to discuss the size of the pupil
diaphragm without worrying about the optical design charac-
teristics of the intervening optics. For the above assumption
concerning relatively undisturbed propagation of the electric
field from the micropupils to the spectrograph pupil, we need
to ensure that the diffracted beam does not get truncated by
the second microlens edge. For this, a criterion would be to
make sure that the diffractive micropupil is much smaller than
the spaxel diameter: DMP � Dspaxel. Plugging this condition
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Figure 6. Scheme of a BIGRE spaxel working at the diffraction limit with an un-resolved entrance pupil. The first lens lies on a focal plane and reimages a micropupil
at its focal distance (f1). The electric field imaged onto this optical plane is a sinc function (one dimension) or a Jinc function (two dimensions). This signal is filtered
by a top-hat transmission function and finally reimaged onto an image plane by the second lens. The distance between this intermediate pupil plane and the second
lens is its focal length (f2). The electric field imaged by this second lens is an un-bound signal with upper envelope much steeper than the one proper to a sinc profile
(∝ u−1) or a Jinc profile (∝ u−1.5).

into Equation (46), we get the following condition on the focal
length of the first surface:

f1 � D2
spaxel

λ
. (47)

Introducing a pupil mask defined by

PM(s) ≡ Π(s/SPM), (48)

where Π(x) is a top-hat function with unitary transmission
within the diameter SPM, which is turn is the pupil mask size in
units of s. We can express the electric field distribution in the
exit slit plane as

Eslit(u) = FT[epupil(s) · PM(s)]. (49)

Hence, evoking the convolution theorem and remembering that
the field in the pupil plane is the Fourier transform of the field
in the spaxel, this can be rewritten as

Eslit(u) = Π(u/Dspaxel) ⊗ FT [Π(s/SPM)] , (50)

i.e., the convolution between a top-hat function corresponding
to the original spaxel transmission function and a Jinc function
corresponding to the micropupil mask.

Finally, the slit function is the square modulus of this signal:

SF(u) = |Eslit(u)|2 , (51)

and its spectral modulation transfer function is

MFT(s) ≡ |FT [SF(u)]| . (52)

8.1. Sampling Analysis Applied to the BIGRE Concept

According to Equation (19), the input focal ratio of the light
coming to the single BIGRE spaxel should be

Figure 7. FWHM of the BIGRE entrance slit function profile as a function
of the pupil mask size SPM. This FWHM gets its absolute minimum when
SPM = 2.5. Dot-dashed horizontal line indicates the asymptotic trend of the
FWHM, corresponding to the pupil mask sizes towards the limit: SPM = ∞.
Dashed horizontal line indicates FWHM value corresponding to the absolute
minimum SPM = 2.5, this one traced with a dashed vertical line.

Fin �
(

2 · Dspaxel

λmin

)
. (53)

From the paraxial perspective, input and output focal ratios of a
BIGRE spaxel are related to the K factor as follows:

FG
out = Fin

K
, (54)

and the geometric micropupil size returns

DMPG ≡ f1

Fin
. (55)

From the diffractive perspective, the output focal ratio is fixed
only when the size of the pupil mask is fixed on the micropupil
plane, due to the unbound nature of this micropupil profile. The
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characteristic size of the diffractive micropupil (DMP) can be
parameterized in terms of the focal ratio of the first BIGRE lens
(F1) and the spectrograph central wavelength (λc) as follows:

DMP = SPM · λc · F1. (56)

The diffractive output focal ratio (Fout) results then from the
following equation:

Fout = FG
out · DMPG

DMP
, (57)

or, exploiting Equations (54), (55), and (56):

Fout =
(

Dspaxel

K · SPM · λc

)
. (58)

Finally, by Equations (21) and (58), the spatial cut-off frequency
of the spectrograph’s exit slit becomes

μC =
(

K · SPM

Dspaxel · mIFS

)
. (59)

Equation (59) indicates that the actual profile of the spectro-
graph’s slit function is no longer a bound signal, just because
the pupil mask gets a finite size. The actual size of the final exit
slit function will be then an unbound signal with spatial cut-off
frequency depending both on the size of this pupil mask and on
the demagnification factor of the BIGRE spaxel and the magni-
fication of the reimaging optics. By this analysis, supersampling
applies to the final exit slit function through Equation (22) as
follows:

2 · dpixel �
(

Dspaxel · mIFS

K · SPM

)
. (60)

We can now study the effect of varying the pupil mask size on
the slit function in terms of cross-talk performance and on the
MTF in terms of aliasing.

Choosing a very large pupil mask, SPM 
 1, corresponds to
transmitting the spaxel transmission profile without modifica-
tion: its FWHM is Dspaxel and cross talk is zero. The MTF is a
Jinc function with first zero at 1.22/s, so sampling this slit with
two pixels across its width causes aliasing of up to around 15%.
On the other hand, choosing a very small pupil mask, SPM � 1
creates a wide slit function with a shape approximately equal to
an Airy pattern of FWHM ∼ Dspaxel/SPM. The cross talk is the
same as that found for the TIGER case, and the MTF is equal to
the classical MTF function for diffraction-limited optical sys-
tems. Sampling corresponding to half of the FWHM is exempt
of any aliasing.

It is somewhat surprising to find in between these two
extremes, the evolution of the FWHM is not monotonic, but
passes through a minimum, located at SPM = 2.5. At this
position, the slit function has a Gaussian-like bell shape, and
its FWHM is ∼ 0.56 · Dspaxel; see Figure 7. The slit function
falls off rapidly, and its first secondary maximum peaks at values
<0.001. Compared with the ones of an Airy function (>0.01)
this ensures a low level of cross talk. The spectral MTF also
resembles a Gaussian function, with a monotonic fall-off; see
Figure 8. For a sampling of two pixels across the FWHM, the
aliasing is well below 6% (see Figure 8).

The presence of a minimum indicates that the size of the slit
function could be stable with respect to variations in wavelength,
indicating that the pupil mask works chromatically as a pupil

Figure 8. MTF of the BIGRE entrance slit. Filtering out the spatial frequencies
above the one corresponding to the entrance slit FWHM (dashed horizontal line)
produces a limited aliasing error: MT F (s) | s > sFWHM < 6%.

Figure 9. Normalized BIGRE entrance slit function. The example shows the
case of the IFU optimized for SPHERE in the working wavelengths range:
0.95–1.35 μm; colors indicate seven distinct wavelengths.

(A color version of this figure is available in the online journal.)

fColl fColl fCam fCam 

Lenslet array Collimator Pupil mask Camera Detector 

Figure 10. BIGRE spectrograph concept. The entrance slits plane is filled
with the micro-images of the first surfaces of the BIGRE spaxels and the spatial
filtering is done in the metapupil plane forming between collimator, having focal
length fColl and the reimaging optics, having focal length fCam ≡ mIFS · fColl.

apodization (Jacquinot & Roisin-Dossier 1964). This is indeed
the case, as indicated in Figure 9, where the slit function is
plotted for several wavelengths in the range 0.95–1.35 μm. We
study the wavelength evolution of coherent and incoherent cross
talks in Section 9.

This analysis suggests then that the spectrograph’s entrance
slit shape can be fixed selecting properly the pupil mask’s
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Figure 11. Average 5σ contrast over an azimuthal area comprised between
0.25 and 1 arcsec from a J = 3.75 (mag) star. The simulations are for 104 s
exposure time and 90◦ field rotation. Filled squares are results of the IFS end-
to-end simulations while the solid line represents the contrast curve expected
by exploiting Equation (63) in order to obtain Cpixel via the S-SDI calibration
technique The adopted postcoronagraph contrast profile is the one presented by
Boccaletti et al. (2008).

Table 2
Independent Parameters of a BIGRE-oriented IFS

Parameter Symbol

Post-coronagraphic Pupil Size ≡ D

IFS Cut-on Wavelength ≡ λmin

IFS Central Wavelength ≡ λc

Size of the Single BIGRE Microlens ≡ Dspaxel

Focal Length of the First BIGRE Optical Surface ≡ f1

Focal Length of the Second BIGRE Optical Surface ≡ f2

Size of the Pupil Mask in Unit of λc · F1 ≡ SMPM

IFS Detector Pixel Size ≡ dpixel

IFS Optical Magnification ≡ mIFS

IFS Disperser (two-pixel) Resolving Power ≡ R

minimum size. Once projected on the final detector plane,
supersampling can be fixed by imposing that two pixels cover
the spectrograph’s exit slit FWHM:

2 · dpixel �
(

mIFS

sFWHM

)
, (61)

where sFWHM is the spatial frequency corresponding to a spatial
period equal to the slit function FWHM, while according to
Equation (26) hypersampling depends on the postcoronagraphic
pupil size, the spectrograph’s working wavelengths range, and
its resolving power.

Finally, as shown in Figure 10, the aim of the optics down-
stream the BIGRE lenslet array is to reimage the entrance slit
into the spectrograph’s image plane with the highest stability
and optical quality; for this reason, the optical design can be
fully dioptric. The requested stability is assured imposing the
telecentricity of the entrance pupil. In turn, this implies that the
metapupil forming between collimator and reimaging optics,
which is the result of the overposition of individual micropupils
forming inside the lenslet array, has a size equal to the size of a
single micropupil, once properly magnified by the ratio between
the equivalent focal length of the collimator optics and the fo-
cal length of the second optical surface of the single BIGRE
lens, while the spatial filtering of the micropupils is obtained
by adopting a unique pupil stop placed onto this spectrograph’s

metapupil plane with a physical size (DPS) obtained as follows:

DPS = DMP ·
(

fColl

f2

)
, (62)

where DMP is fixed by Equation (56). Thus, a suitable dispersing
device can be inserted in the optical train after this pupil
stop allowing us to image the exit slits as true spectra on the
spectrograph’s image plane.

9. BIGRE AND TIGER IFU SOLUTIONS FOR SPHERE IFS

Coherent and incoherent cross talks establish the actual
imaging contrast measured onto the detector (Cpixel) with respect
to the reference value (Cspaxel) depending on the spatial sampling
of the postcoronagraphic speckle field. Their difference depends
on cross talk just because the optical signal imaged by a fixed
spaxel is spread over a number of detector pixels larger than the
ones corresponding to it by geometrical optical propagation
only, in a way which is proportional to the levels of cross
talks. When the cross-talk coefficients are sufficiently small this
difference can be approximated as

Cpixel − Cspaxel ≈ −n · (CCT + ICT), (63)

where n is the number of adjacent spaxels around the fixed one,
while CCT and ICT are the cross-talk coefficients defined by
Equations (31) and (36), respectively.

For the IFS channel of SPHERE, the requested cross-talk
coefficients have been determined through a series of simula-
tions devoted to measure the contrast capabilities of this integral
field spectrograph. The result is that the impact of cross talk is
well reduced when the supersampling condition is verified. This
fact can be explained heuristically remembering the meaning of
the cross-talk errors over a fixed spectrograph’s exit slit: to re-
place its monochromatic intensity with the sum of this intensity
and the average of the intensities proper to the exit slits cor-
responding to its adjacent spaxels (via the coherent cross-talk
coefficient) together with the average of the intensities proper
to the exit slits corresponding to its adjacent spectra (via the
incoherent cross-talk coefficient). In the case of supersampling,
adjacent exit slits do not suffer from a mutual shape variations,
instead they suffer only from mutual differences in intensity
due to the input postcoronagraphic speckle field. In this way,
the residual between a fixed exit slit’s intensity and its ideal
value (free from cross-talk errors) becomes small beyond a fixed
threshold depending on the speckle rejection capabilities of the
coronagraph. No gain in contrast is then possible for further
decrements of the cross-talk coefficients. In the case of the IFS
simulations this threshold returns to be 0.01 (see Figure 11). As
a conclusion, the IFU solutions for the IFS of SPHERE should
be compliant with this specification.

Figures 12 and 13 show the levels of incoherent cross talks,
respectively, in the TIGER and BIGRE designs optimized for
SPHERE, plotted against wavelength. While the incoherent
cross talk is below the 1% threshold for both designs, the BIGRE
design is clearly superior, showing a minimum towards the
middle of the range corresponding to the wavelength at which
the pupil mask is optimal. The coherent cross talk is greater
than the incoherent one, as expected, but again the BIGRE
design shows superior performance, and remains well below the
1% threshold across the spectral range of interest. The TIGER
design, on the other hand, is not within the specified limit.

Table 3 resumes the solution we found for the BIGRE-
oriented IFU of SPHERE allowing to reach the requested
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Figure 12. Incoherent cross-talk coefficient as a function of the wavelength in
the range 0.95–1.35 μm. Solid line represents the BIGRE solution, dashed line
the TIGER one and dot-dashed line the SPHERE IFS specification.

Figure 13. Coherent cross-talk coefficient as a function of the wavelength in
the range 0.95–1.35 μm. Solid line represents the BIGRE solution, dashed line
the TIGER one and dot-dashed line the SPHERE IFS specification.

Table 3
Basic Parameters Proper to the BIGRE Solution of SPHERE

Dspaxel = 161.5 μm λmin = 0.95 μm K = 4.1 Fout = 12
mIFS = 1.69 dpixel = 18 μm R = 54

Table 4
Basic Parameters Proper to the TIGER Solution of SPHERE

Dspaxel = 150 μm λmin = 0.95 μm Fout = 7
mIFS = 2.4 dpixel = 18 μm R = 24

coherent and incoherent cross-talk levels. With this solution
hypersampling is verified within the whole scientific field of
view: the Nyquist radius is larger than the radial field of view
imaged by the spectrograph’s optics (1.25 arcsec). Table 4
summarizes the solution we found for the TIGER-oriented
IFU of SPHERE. This one allows us to reach the requested
incoherent cross-talk limit but not the requested coherent cross-
talk limit, while hypersampling is well verified as in the previous
case.

Based on these results, a BIGRE design is chosen for the
IFS channel of SPHERE, configured with circular spaxels in a
hexagonal lattice configuration (see Figure 14).

Figure 14. Sketch of the selected hexagonal configuration for the final spectra
of SPHERE IFS. The left-oriented axis is the reference on the IFU plane (filled
with hexagons representing a portion of the spaxels lattice), while the right-
oriented axis traces the dispersion direction and the black rectangles the spectra
imaged onto the detector plane. The spectra are 35 pixel long in the dispersion
direction and the separation to the nearest neighborhood is 5 pixel, both in the
spectral and in the spatial direction.

10. COMPARING DIFFERENT BIGRE AND TIGER
SPAXEL SHAPES AND IFU LATTICE CONFIGURATIONS

In this Section we compare the slit functions generated
through the TIGER and BIGRE image propagation, computed
for different spaxel shapes and lattice configurations of the
entire IFU. This comparison is made assuming common spaxel
size and wavelength. This analysis allows us to derive the
best lenslet-array optical concept and the optimum IFU lattice
configuration in the ideal diffraction limited case, i.e., when the
object plane of the lenslet array is an unresolved entrance pupil.

The diagnostic quantities exploited for this analysis are the
amount of coherent and incoherent intensities both measured
onto the entrance slits plane of the spectrograph, before any
chromatical dispersion and reimaging onto a suited detector
plane. To this aim, it is important to stress the meaning of
coherent and incoherent signals and the one of their related
cross-talk terms. Coherent signal is the intensity term due to
interference between adjacent spaxels measured at any point of
the entrance slits plane. Such a signal depends on the optical path
difference between adjacent spaxels only; in this sense spaxels
can be compared to apertures of a standard grating. The coherent
cross-talk coefficient is the maximum amount of coherent signal,
see Section 6.1. Incoherent signal is the stray intensity terms
due to the image propagation diffraction effects measured at
any point of the entrance slits plane. Such a signal depends on
the distance between adjacent spectra projected onto this plane;
in this sense this signal depends on the final configuration of
the spectra on to the detector plane. The incoherent cross-talk
coefficient is the maximum amount of incoherent signal, see
Section 6.2.

The comparison between TIGER and BIGRE is performed
for two distinct shapes of the single spaxel (circular and square)
and for two distinct IFU lattice configurations (hexagonal
and square). The combination of such different shapes and
configurations allows us to compare the TIGER and the BIGRE
concepts in term of coherent and incoherent signals for standard
lenslet-array optical setups. It is important to note that these
simulations consider as input a normalized signal without
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Figure 15. Normalized BIGRE and TIGER slit functions comparison. The adopted lenslet aperture is always 161.5 μm, i.e., the one proper to the BIGRE solution for
SPHERE (see Table 2); the adopted wavelength is always 1 μm. First column shows the images given by individual spaxels in a bilogarithmic scale. Second column
shows the relative profiles (in the case of square spaxel shape diagonal profiles are presented in green color). The power laws fitting the slit functions proper to a
circular and a square TIGER-oriented spaxel are indicates for reference by solid lines. These simulations consider Fraunhofer propagation only and assume as input
signal of the lenslet array an unresolved entrance pupil. Finally, results are independent to the detector pixel scale just because images refer to the spectrograph’s
entrance slits plane.

(A color version of this figure is available in the online journal.)
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Figure 16. Normalized BIGRE and TIGER slit functions comparison. The adopted lenslet aperture is always 161.5 μm, i.e., the one proper to the BIGRE solution
for SPHERE (see Table 2); the adopted wavelength is always 1 μm. First column shows the images given by an individual spaxel together with its adjacent ones and
for different IFU lattice configurations. Second column shows the relative profiles: black color indicates the slit function (the signal represents the detection expected
if only the central spaxel were illuminated); red color indicates the signal due to adjacent spaxels only; blue color is the coherent signal arising from the interference
of the signal proper to the central spaxel with all the adjacent ones. These simulations consider Fraunhofer propagation only and assume as input signal of the lenslet
array an unresolved entrance pupil. Finally, results are independent to the detector pixel scale just because images refer to the spectrograph’s entrance slits plane.

(A color version of this figure is available in the online journal.)
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amplitude and phase differences between adjacent spaxels. In
this way, the results obtained are independent with respect to
the actual speckle pattern beating the IFU.

As Figure 15 indicates, adopting a bilogarithmic scale, the
single BIGRE slit gets an intensity profile steeper than the one
proper to the single TIGER slit both in the case of circular and
square shapes. More in detail, the upper envelope to the slit
intensity profile proper to a circular TIGER-oriented spaxel is
a power law with index equal to −3, while the same quantity
for a square TIGER-oriented spaxel is a power law with index
equal to −2 along the aperture side and with index equal to −4
along its diagonal. At contrary, the upper envelope of the slit
intensity profile proper to a circular BIGRE-oriented spaxel is
not a power law (only its asymptotic tail is fitted quite well with
a power law having index ∝−4.5); the same quantity is not a
power law in the case of a square BIGRE-oriented spaxel too
(only its asymptotic tail is fitted quite well with a power law
with index ∝−3 in the direction of the aperture side and index
∝−6 along its diagonal).

The result is that the BIGRE-oriented circular aperture
within a hexagonal lattice configuration allows a superior
suppression of coherent and incoherent signals, while the slits
generated by a circular TIGER-oriented aperture in a hexagonal
lattice are similar—in this context—to the ones generated by
a square BIGRE-oriented aperture in a square lattice. Finally,
the slits generated by a square TIGER-oriented aperture in a
square lattice are the worst in term of coherent and incoherent
signals suppression, see Figure 16. Hence, the contribution of
nonadjacent spaxels can be neglected when evaluating the cross-
talk signals in the case of a BIGRE spectrograph, just because
the power laws fitting—in a bilogarithmic plot—the intensity
distribution proper to the TIGER slit functions do not fit at all
the one proper to the BIGRE slit functions. At contrary, the
intensity distribution proper to the BIGRE slit functions can be
only approximated with lower index power laws. Thus, what for
a TIGER lenslet array represents an estimate only, for a BIGRE
lenslet array it gives realistic measures of the signals due to the
spectrograph’s slit functions cross-talk.

11. CONCLUSIONS

By integral field spectroscopy it is possible to realize the
S-SDI calibration technique in the way proposed by Berton
et al. (2006), and—at least in a few cases—to get the spectrum
of candidate extrasolar giant planets adopting suited spectral
de-convolution recipes, as the one proposed by Thatte et al.
(2007). However, these techniques can increase the contrast
performances only when several sampling conditions, both in
the spatial and in the spectral domain of the speckle field, are
verified.

Our effort has been then to discuss in general terms the critical
sampling conditions needed to deal with a speckle field data
cube before applying on it the S-SDI calibration technique or
any spectral de-convolution recipe.

To this purpose, we evaluated the impact of the cross talk
as a function of various parameters of a lenslet-based integral
field spectrograph, especially in the case of trying to minimize
the number detector pixels (which is an issue in general for
IFS) in the case of strong specifications, as the ones requested
for high-contrast imaging. For this reason we conceived a new
optical scheme—we named BIGRE—and characterized it in
the specific case of the IFS channel foreseen inside SPHERE,
showing that a BIGRE-oriented spectrograph is conceptually
feasible by standard dioptric optical devices. Once applied to

the technical specifications of this instrument, a BIGRE integral
field unit is able to take into account the effects appearing
if a lenslet array is used in diffraction-limited conditions.
Specifically, we proved here that coherent and incoherent cross-
talk coefficients reach values deeper than for a TIGER IFU
when applied to the same optical frame. More in general, the
comparison between the BIGRE and the TIGER spaxel concept
has been pursued in terms of coherent and incoherent cross-talk
suppression, adopting a common size for the single aperture
and a fixed monochromatic wavelength for the wavefront
propagation. In the ideal case of uniform illumination with un-
resolved entrance pupil, the circular BIGRE spaxel within an
hexagonal IFU lattice configuration shows to be the optimal
solution among the ones we investigated.

The authors thank Roberto Ragazzoni for the support he gave
them in the development of this subject, from the primeval
CHEOPS project to SPHERE. Jacopo Antichi thanks personally
Bernard Delabre for a dedicated work session at ESO-Garching
in 2007 April, devoted to the final design optimization of the
BIGRE-oriented spectrograph to be mounted in SPHERE and
Christophe Vérinaud for his advising during the completion of
the manuscript. Jacopo Antichi is supported by LAOG through
the European Seventh Framework Programme INFRA-2007-
2.2.1.28.

REFERENCES

Bacon, R., et al. 1995, A&AS, 113, 347
Bacon, R., et al. 2001, MNRAS, 326, 23
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 2002, A&A, 382, 563
Berton, A., Gratton, R. G., Feldt, M., Henning, T., Desidera, S., Turatto, M.,

Schimd, H. M., & Waters, R. 2006, PASP, 118, 1144
Beuzit, J.-L., et al. 2008, Proc. SPIE, 7014, 701418
Biller, B. A., Close, L., Lenzen, R., Brandner, W., McCarthy, D. W., Nielsen,

E., & Hartung, M. 2004, Proc. SPIE, 5490, 389
Boccaletti, A., Carbillet, M., Fusco, T., Mouillet, D., Langlois, M., Moutou, C.,

& Dohlen, K. 2008, Proc. SPIE, 7015, 70156E
Born, M., & Wolf, E. 1965, Principles of Optics. Electromagnetic Theory

of Propagation, Interference and Diffraction of Light (3rd ed., Oxford:
Pergamon)

Burrows, A., Sudarsky, D., & Hubeny, I. 2004, ApJ, 609, 407
Burrows, A., Sudarsky, D., & Lunine, J. I. 2003, ApJ, 596, 587
Cavarroc, C., Boccaletti, A., Baudoz, P., Fusco, T., & Rouan, D. 2006, A&A,

447, 397
Chauvin, G., Lagrange, A.-M., Dumas, C., Zuckerman, B., Mouillet, D., Song,

I., Beuzit, J.-L., & Lowrance, P. 2004, A&A, 425, L29
Chauvin, G., et al. 2005, A&A, 438, L29
Dohlen, K., et al. 2006, Proc. SPIE, 6269, 62690Q
Gisler, D., et al. 2004, Proc. SPIE, 5492, 463
Goodman, J. W. 1996, Introduction to Fourier Optics (2nd ed., New York:

McGraw-Hill)
Jacquinot, P., & Roisin-Dossier, B. 1964, Prog. Opt., 3, 29
Lafrenière, D., Jayawardhana, R., & van Kerkwijk, M. H. 2008, ApJ, 689, L153
Lagrange, A.-M., et al. 2008, A&A Lett, in press
Lenzen, R., Close, L., Brandner, W., Hartung, M., & Biller, B. 2005, Science

with Adaptive Optics (Berlin: Springer)
Kalas, P., et al. 2008, Science, 322, 1345
Kasper, M. E., et al. 2008, Proc. SPIE, 7015, 701515
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